Math, asked by StarTbia, 1 year ago

Show that ΔABC, where A(-2, 0), B(2, 0), C(O, 2) and ΔPQR where P( -4, 0), Q(4, 0), R(0, 2) are similar triangles.

Answers

Answered by shushant16june
1
find distance between to point A.,B. B To C angin similar then all triangles all side equal so its equal
Answered by VemugantiRahul
2
Hi there!
Here's the answer:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

Given,

A(-2, 0), B(2, 0), C(O, 2) are the Vertices of ∆ABC

P( -4, 0), Q(4, 0), R(0, 2) are the Vertices of ∆PQR

¶¶Step-1 :
Find the Sides of ∆ABC viz., AB, BC, CA
using distance between two points formula

• A(-2, 0), B(2, 0)
AB = \sqrt{(2+2)^{2}+(0-0)^{2}}

=> AB = 4

• B(2, 0), C(0, 2)
BC= \sqrt{(0-2)^{2}+(2-0)^{2}}

=> BC = \sqrt{8}
=> BC = 2\sqrt{2}

• A(-2, 0), C(0,2)
AC = \sqrt{(0+2)^{2}+(2-0)^{2}}

=> AC = \sqrt{8}
=> AC = 2\sqrt{2}

¶¶Step 2 :
Find the Sides of ∆PQR viz., PQ, QR, PR
using distance between two points formula

• P(-4, 0), Q(4,0)
PQ = \sqrt{(4+4)^{2}+(0-0)^{2}}

=> PQ = 4

• Q(4, 0), R(0, 4)
QR= \sqrt{(0-4)^{2}+(4-0)^{2}}

=> QR = \sqrt{32}
=> QR = 4\sqrt{2}

• P(-4, 0), R(0,4)
PR = \sqrt{(0+4)^{2}+(4-0)^{2}}

=> PR = \sqrt{32}
=> PR = 4\sqrt{2}

¶¶ Step-3: Check the similarity criteria Using the Basic Proportionality Theorem (Thales Theorem)

i.e., Check whether :
\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}

\frac{AB}{PQ} = \frac{4}{8} = \frac{1}{2}

\frac{BC}{QR} = \frac{2\sqrt{2}}{4\sqrt{2}} = \frac{1}{2}

\frac{AC}{PR} = \frac{2\sqrt{2}}{4\sqrt{2}} = \frac{1}{2}

•°•
\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}

Thales theorem satisfied

∆ABC is similiar to ∆PQR.

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•
Similar questions