Show that:(Class 11)
Sin (∝+Β) Cos(∝-Β) + Cos(∝+Β)Sin(∝-Β)= Sin2∝
Answers
Answered by
2
Answer:
Sin( a + B ) = sin a cos B + cos a sinB
Cos ( a - B ) = cos a cos B + sina sin B
Cos ( a + B ) = cos a cos B - sin a sin B
Sin ( a - B ) = sin a cos B - cos a sin B
And sin 2 a = 2 sin a cos a
Now,
=> (sin a cos B + cos a sinB) (cos a cos B + sina sin B) + ( cos a cos B - sin a sin B) (sin a cos B - cos a sin B)
=> ( sin a cos a cos^2 B + sin^2 a sin B cos B + cos^2a sin B cos B + sin^2 B cos a sin a )
+ ( cos^2 B cos a sin a - cos^2a cos B sin B - sin^2 a sin B cos B + sin^2 B sin a cos a )
=> cos a sin a + cos a sin a
=> 2 sin a cos a
=> sin 2 a = RHS
QED
Anonymous:
Did u get the answer?
Answered by
1
Answer:
hope it helps u........
Attachments:
Similar questions