English, asked by kanishka6277, 10 months ago

show that cube of any integer can be expressed in one the form 9k,9k+1,9k+8​

Answers

Answered by zaidazmi8442
10

take \ \\ any \: integer \: can \: be \: express \\  n = 3m + 2 \ \: or \: 3m + 1 \:  \: and \:  \: 3m \\  {n}^{3}  =  {(3m + 2)}^{3}  \\  \:  \:  \: =  27 {m}^{3} + 8 + 8m(3m + 2)  \\  \:  \:  \:  =  9(3 {m}^{3} + 6 {m}^{2}  + 4m)  + 8 \\  \:  \: =   9k + 8 \:  \: where \:   \\  \:  \:  \:  \:  \:  \:  \: \: k = (3 {m}^{3}  + 6 {m}^{2} + 4m ) \\ similarly \: you \: can \: do \: all

Answered by Anonymous
7

Let the a be any positive integer when divided by 9 gives "q" as quoteint and "r" as remainder.

Then,by using Euclid division lemma

a = bq + r \: (0  <  =    r < b)

a = 9q + r \: (r = 0 .1.2.3....)

Case :- 1 ,when r = 0

a = 9q

Cubing on both side,

 {a}^{3}  =  {(9q)}^{3}

 {a}^{3}  = 729 {q}^{3}

let \: 9 {q}^{3}  = k \: for \: some \: integer \: k

 {a}^{3}  = 9k

Case 2 ,when r = 1

a =  9q + 1

Cubing on both sides

 {a}^{3}  = {(9q + 1)}^{3}

 {a}^{3}  = 729 {q}^{3}  + 243q + 27q + 1

 {a}^{3}  = 9(81 {q}^{3}  + 27 {q}^{2} +  3q) + 1

let(81 {q}^{3}  + 27 {q}^{2}  + 3q) = k

for some integer ,k

 {a}^{3}  = 9k + 1

Case 3, when r=2,

a = 9q + 2

Cubing on both sides ,

 {a}^{3}  =  {(9q + 2)}^{3}

 {a}^{3}  = 729 {q}^{3}  + 486 {q}^{2}  + 108q + 8

 {a}^{3}  = 9(81 {q}^{3}  + 53 {q}^{2}  + 21q) + 8

let(81 {q}^{3}  + 53 {q}^{2}  + 21q) = k

for some integer k,

 {a}^{3}  = 9k + 8

hence,the cube of every positive integer can be expressed in the form of 9k , 9k+1, 9k+8 for some integer k.

Similar questions