show that cyclic trapezium is isosceles
Answers
Answer:
Step-by-step explanation: let ABCD be the cyclic trapezium with
AB IICD.
thus' C draw CE parallel to AD meeting AB in E.
So,
AECD is a parallelogram.
so,
angle D=angle AEC.... opp angles of a parallelogram are equal....(i)
but,
angle D+angle ABC=180... opp angles of a cyclic quadr are supplementary....(ii)
from (i) and (ii)
angle AEC+angle ABC=180
but,
angle AEC+angle CEB= 180...linear pair
so,
angle ABC= angle CEB ..(iii)
so,
CE=CB... sides opp equal angles are equal.(iv)
but,
CE=AD...opp sides of parallelogram AECD.
from (iv)
we get,
AD=CB
Thus cyclic quadri ABCD is isoceles.
◾◽◾◽◾◽◾◽◾◽◾◽◾
hope it helps you..⭐⭐⭐
Mark as Brilliant..⭐⭐⭐⭐⭐
let ABCD be the cyclic trapezium with
AB IICD.
thus' C draw CE parallel to AD meeting AB in E.
So,
AECD is a parallelogram.
so,
angle D=angle AEC.... opp angles of a parallelogram are equal....(i)
but,
angle D+angle ABC=180... opp angles of a cyclic quadr are supplementary....(ii)
from (i) and (ii)
angle AEC+angle ABC=180
but,
angle AEC+angle CEB= 180...linear pair
so,
angle ABC= angle CEB ..(iii)
so,
CE=CB... sides opp equal angles are equal.(iv)
but,
CE=AD...opp sides of parallelogram AECD.
from (iv)
we get,
AD=CB
Thus the cyclic trapezium ABCD is isoceles.
Mark as the brainliest❤️❤️❤️