Math, asked by Ritikakaushal, 23 days ago

show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height (h) and semi vertical angle ( alpha) is one third that of the cone and greatest volume of cylinder is
4 \div 27\pi  {h}^{3}  \ { \tan( \alpha ) }^{2}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let assume that

↝ Radius of cylinder = x

and

↝ Height of cylinder = y

and

↝ Volume of cylinder = V

Given that,

↝ Height of cone = h and semi - vertical angle is alpha.

So, from figure, we get

↝ Height of cylinder, y = h - a

\bf \implies\:y = h - x \: cot \alpha  -  -  - (1)

Now, we know,

\rm :\longmapsto\:\boxed{ \tt{ \: Volume_{cylinder} = \pi \:  {r}^{2} \: h \: }}

where,

r is radius of cylinder

h is height of cylinder

So, on substituting the values, we get

\rm :\longmapsto\:V = \pi \:  {x}^{2} (h - xcot \alpha )

can be further rewritten as

\rm :\longmapsto\:V = \pi \:  (h{x}^{2} -  {x}^{3} cot \alpha )

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}V =\dfrac{d}{dx} \pi \:  (h{x}^{2} -  {x}^{3} cot \alpha )

\rm :\longmapsto\:\dfrac{dV}{dx} = \pi \: (2hx - 3 {x}^{2}cot \alpha )

For maxima or minima,

\rm :\longmapsto\:\dfrac{dV}{dx} = 0

\rm :\longmapsto\:\pi \: (2xh - 3 {x}^{2} cot \alpha ) = 0

\rm :\longmapsto\:2hx =  {3x}^{2}cot \alpha

\rm :\longmapsto\:2h=  {3x}^{}cot \alpha

\bf\implies \:\boxed{ \tt{ \: x =  \frac{2h}{3cot \alpha } \: }}

Now, again,

\rm :\longmapsto\:\dfrac{dV}{dx} = \pi \: (2hx - 3 {x}^{2}cot \alpha )

So, on differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} }  = \pi(2h - 6xcot \alpha )

On substituting the value of x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} }  = \pi\bigg(2h - 6cot \alpha  \times \dfrac{2h}{3cot \alpha }\bigg )

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} }  = \pi\bigg(2h - 4h\bigg )

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} }  = \pi\bigg(- 2h\bigg )

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} }   < 0

\bf\implies \:V \: is \: maximum \: at \: x = \dfrac{2h}{3cot \alpha }

Part - 1

Height of Cylinder

As from above, Height of cylinder, y

\rm :\longmapsto\:\:y = h - x \: cot \alpha

\rm :\longmapsto\:\:y = h - \: cot \alpha   \times \dfrac{2h}{3cot \alpha }

\rm :\longmapsto\:\:y = h - \: \dfrac{2h}{3 }

\rm :\longmapsto\:\:y = \: \dfrac{3h - 2h}{3 }

\rm :\longmapsto\:\:y = \: \dfrac{h}{3}

Hence,

  • Height of cylinder is one third of height of cone.

Part - 2

Volume of cylinder

From above,

Volume of cylinder V is given by

\rm :\longmapsto\:V = \pi \:  {x}^{2} (h - xcot \alpha )

On substituting the value of x, we get

\rm :\longmapsto\:V = \pi \:  {\bigg[\dfrac{2h}{3cot \alpha } \bigg]}^{2} \bigg(h - cot \alpha \bigg[\dfrac{2h}{3cot \alpha } \bigg]\bigg)

\rm :\longmapsto\:V = \pi \:  {\bigg[\dfrac{4 {h}^{2} }{9cot^{2} \alpha } \bigg]}^{} \bigg(h -  \dfrac{2h}{3} \bigg)

\rm :\longmapsto\:V = \pi \:  {\bigg[\dfrac{4 {h}^{2} }{9cot^{2} \alpha } \bigg]}^{} \bigg( \dfrac{3h - 2h}{3}\bigg)

\rm :\longmapsto\:V = \pi \:  {\bigg[\dfrac{4 {h}^{2} }{9cot^{2} \alpha } \bigg]}^{} \bigg( \dfrac{h}{3}\bigg)

\bf\implies \:V = \dfrac{4}{27}\pi \:  {h}^{3} \:  {tan}^{2} \alpha

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Attachments:
Similar questions