Math, asked by senriya5644, 1 year ago

Show that in a right triangle the square of the hypotenuse

Answers

Answered by muskanc918
28

\huge\bold{\rm{\underline{Answer:}}}

\large\rm{\bigstar{\underline{Statement-}}}

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

\large\rm{\bigstar{\underline{Given-}}}

ABC is a right triangle right triangled at A so that BC is its hypotenuse.

\large\rm{\bigstar{\underline{To\:Prove-}}}

\sf{\implies      {BC}^{2}  =  {AB}^{2}  +  {AC}^{2}       }

\large\rm{\bigstar{\underline{Construction-}}}

From A, draw AD perpendicular on BC.

\large\rm{\bigstar{\underline{Proof-}}}

\large\sf{In\:\triangle DBA \:and\:\triangle ABC, }

\large\sf{\angle ABD=\angle ABC}...(same angle)

\large\sf{\angle ADB=\angle BAC}...(each 90°)

\large\sf{So, \triangle DBA \:\sim \triangle ABC}....(By AA similarity criterion)

\large\sf{\frac{AB}{BC}=\frac{BD}{AB}}

\large\sf{\implies {AB}^{2}=BD \times BC}.......(i)

\large\sf{ In\:\triangle DAC \:and\:\triangle ABC,   }

\large\sf{ \angle ACD=\angle ACB   }...(same angle)

\large\sf{  \angle ADC=\angle BAC }...(each 90°)

\large\sf{   So, \triangle DAC \:\sim \triangle ABC   }....(By AA similarity criterion)

\large\sf{     \frac{AC}{BC}=\frac{DC}{AC}    }

\large\sf{   \implies {AC}^{2}=DC \times BC}.....(ii)

\large\sf{On\:adding\:(i) \:and\:(ii) -}

\large\sf{{AB}^{2} + {AC}^{2}= BD \times\:BC + DC \times BC}

\large\sf{  {AB}^{2} + {AC}^{2}=(BD + DC) \times BC}

\large\sf{       {AB}^{2} + {AC}^{2}=BC \times BC   }

\large\sf{\implies  {AB}^{2} + {AC}^{2}={BC}^{2}  }

\large\sf{Hence,   {AB}^{2} + {AC}^{2}={BC}^{2}   }

\large\sf{The\:\:above\:\:result\: \:\:is\:\:known }

\large\sf{as\:\:\:Pythagoras\:\:\:Theorem. }

Attachments:

Anonymous: Awesome di !
muskanc918: Thanks! bro ✨❤✨
Answered by Blaezii
7

Answer:

Step-by-step explanation:

Given: A right triangle ABC right angled at B.

To Prove: AC2 = AB2 + BC2

Construction: Draw BD ⊥ AC

Proof:

In Δ ADB and Δ ABC,

∠ ADB = ∠ ABC (each 90°)

∠ BAD = ∠ CAB (common)

Δ ADB ~ Δ ABC (By AA similarity criterion)

Now, AD/AB = AB/AC (corresponding sides are proportional)

AB2 = AD × AC … (i)

Similarly, Δ BDC ~ Δ ABC

BC2 = CD × AC … (ii)

Adding (i) and (ii)

AB2 + BC2 = (AD × AC) + (CD × AC)

AB2 + BC2 = AC × (AD + CD)

AB2 + BC2 = AC2

Hence Proved.

Attachments:
Similar questions