Math, asked by meetniralasatyam, 18 days ago

show that lim x tends to 2- x/[x] is not equal to lim x tends to 2+ x/[x]​

Answers

Answered by mathdude500
9

Given Question :-

Show that,

\displaystyle\lim_{x \to 2^-}\rm  \frac{x}{[x]}  \:  \ne \:  \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{x}{[x]} \\

where, [ . ] denotes greatest integer function.

\large\underline{\sf{Solution-}}

Consider,

\rm \: \displaystyle\lim_{x \to 2^-}\rm  \frac{x}{[x]} \\

To evaluate this limit, we use method of Substitution

So, Substitute

\rm \: x = 2 - h, \:  \: as \: x \:  \to \: 2, \:  \: so \: h \:  \to \: 0 \\

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{2 - h}{[2 - h]}  \\

Now, By definition of Greatest Integer function,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf [x] \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 \leqslant x < 2 & \sf 1 \\ \\ \sf 2 \leqslant x < 3 & \sf 2 \end{array}} \\ \end{gathered} \\

So, using this definition, we have

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{2 - h}{1}

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  (2 - h) \\

\rm \:  =  \: 2 \\

\rm\implies \: \boxed{\sf{  \: \:\displaystyle\lim_{x \to 2^-}\rm  \frac{x}{[x]} = 2 \: }} \: -  -  - (1)  \\

Now, Consider

\rm \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{x}{[x]} \\

Now, to evaluate this limit, we have to use method of Substitution

So, Substitute

\rm \: x = 2 + h, \:  \: as \: x \:  \to \: 2, \:  \: so \: h \:  \to \: 0 \\

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{2 + h}{[2 +  h]}  \\

So, by definition of Greatest Integer function, we have

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf [x] \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 \leqslant x < 2 & \sf 1 \\ \\ \sf 2 \leqslant x < 3 & \sf 2 \end{array}} \\ \end{gathered} \\

So, using this definition, we have

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{2 + h}{2} \\

\rm \:  =  \: \dfrac{2}{2}  \\

\rm \:  =  \: 1 \\

So,

\rm\implies \: \boxed{\sf{  \: \:\displaystyle\lim_{x \to 2^ + }\rm  \frac{x}{[x]} = 1 \: }} \: -  -  - (2)  \\

So, from equation (1) and (2), we concluded that

 \:  \: \:  \: \:  \:  \:  \:   \quad\boxed{\sf{  \:  \: \displaystyle\lim_{x \to 2^-}\rm  \frac{x}{[x]}  \:  \ne \:  \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{x}{[x]} \: \:  \:  }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ log(1 + x)}{x} \:  =  \: 1 \: }} \\

Answered by maheshtalpada412
2

Step-by-step explanation:

 \tt\[ \underset{x \rightarrow 2^{-}} { \lim}\dfrac{x}{[x]} \]

Let \sf x=2-h, where \sf h \rightarrow 0

 \tt \: \quad \quad \qquad \lim _{h \rightarrow 0} \dfrac{(2-h)}{[2-h]}  =\dfrac{2}{1}    \\  \tt \lim _{x \rightarrow 2^{+}} \dfrac{x}{[x]}

Let \sf x=2+h, where \sf h \rightarrow 0

\[ \begin{array}{l} \underset{ \tt \: h \rightarrow 0}{ \lim}  \tt\dfrac{(2+h)}{[2+h]}  =\dfrac{2}{2}  =1 \end{array} \]

 \tt \: Thus,  \underset{x \rightarrow 2^{-}}{  \lim}\dfrac{x}{[x]} \neq \underset{x \longrightarrow 2^{+}}{  \lim} \dfrac{x}{[x]}

Similar questions