Math, asked by khushi8125, 1 year ago

show that one and only one of the number n+2 n n+4 is divisible by 3

Answers

Answered by Anonymous
4
We applied Euclid Division algorithm on n and 3. 
a = bq +r  on putting a = n and b = 3 n = 3q +r
  , 0<r<3 i.e n = 3q   -------- (1)
,n = 3q +1 --------- (2)
, n = 3q +2  -----------(3)
 n = 3q is divisible by 3 or n +2  = 3q +1+2 = 3q +3 also divisible by 3 or n +4 = 3q + 2 +4 = 3q + 6 is also divisible by 3Hence n, n+2 , n+4 are divisible by 3....
I hope it help's u.....
Answered by Anonymous
5

Step-by-step explanation:


Euclid's division Lemma any natural number can be written as: .


where r = 0, 1, 2,. and q is the quotient.



thus any number is in the form of 3q , 3q+1 or 3q+2.


case I: if n =3q


n = 3q = 3(q) is divisible by 3,


n + 2 = 3q + 2 is not divisible by 3.


n + 4 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.


case II: if n =3q + 1


n = 3q + 1 is not divisible by 3.


n + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) is divisible by 3.


n + 4 = 3q + 1 + 4 = 3q + 5 = 3(q + 1) + 2 is not divisible by 3.


case III: if n = 3q + 2


n =3q + 2 is not divisible by 3.


n + 2 = 3q + 2 + 2 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.


n + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) is divisible by 3.


thus one and only one out of n , n+2, n+4 is divisible by 3.



Hence, it is solved



THANKS



#BeBrainly.



Similar questions