Show that square of any positive odd integer is of the form 8m+1 for some integer m???
Answers
Answered by
8
let AB be any positive odd interger and q and r be their unique exist
so a is equal to bq pluse r.
let r is equal to 1,2,3,4.
so on the place of 8m let be 4m .
caseI let r be equal to 1
aequal to 4m multiplyby 1 pluse remaimder .
so a is equal to 4m taking squalre on both side you can do like this.
so a is equal to bq pluse r.
let r is equal to 1,2,3,4.
so on the place of 8m let be 4m .
caseI let r be equal to 1
aequal to 4m multiplyby 1 pluse remaimder .
so a is equal to 4m taking squalre on both side you can do like this.
Answered by
9
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2, 3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
(8q)^2
=> 64q^2
8(8q^2)
= let 2q^2 be m
8m
case 2.
r=1
a=bq+r
(8q+1)^2
(8q)^2+2*8q*1+(1)^2
64q^2+16q+1
8(8q^2+2q)+1.
let 8q^2+2q be. m
8m+1
case 3.
r=2
(8q+2)^2
(8q)^2+2*8q*2+(2)^2
64q^2+32q+4
8(8q^2+4q)+4
let 8q^2+4q be m
8m+4
case4.
r=3
(8q+3)^2
(8q)^2+2*8q*3+(3)^2
64q^2+48q+9
64q^2+48q+8+1
8(8q^2+6q+1)+1
let 8q^2+6q+1 be m
8m+1
case 5.
r=4
(8q+4)^2
64q^2+64q+16
8(8q^2+8q+2)
let 8q^2+8q+2 be m
8m
case 6
r=5
(8q+5)^2
64q^2+80q+25
64q^2+80q+24+1
8(8q^2+10q+3)+1
let 8q^2+10q+3 be m
8m+1
case 7
r=6
(8q+6)^2
64q^2+96q+36
64q^2+96q+32+4
8(8q^2+12q+4)+4
let 8q^2+12q+4 be m..
8m+4
case8.
r=7
(8q+7)^2
64q^2+112q+49
64q^2+112q+48+1
8(8q^2+14q+6)+1
let 8q^2+14q+6 be m
8m+1
from above it is proved.
Similar questions
Hindi,
7 months ago
History,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago