Math, asked by achansriharigmailcom, 1 year ago

show that tan ^2 tita + tan^4 tita = sec^4 tita - sec^2 tita

Answers

Answered by Anonymous
11
HEY mate here is your answer.

hope it helps you
Attachments:
Answered by ArchitectSethRollins
7
Hi friend
---------------
Your answer
--------------------

To prove : - tan²θ + tan⁴θ = sec⁴θ - sec²θ

Now,

LHS : -

tan²θ + tan⁴θ

= sin²θ/cos²θ + sin⁴θ/cos⁴θ

= (sin²cos²θ + sin⁴θ)/cos⁴θ

=> [sin²θ(cos²θ + sin²θ)]/cos⁴θ

=> (sin²θ × 1)/cos⁴θ. [Because , sin²θ + cos²θ = 1 ]

=> sin²θ/cos⁴θ

Again ,

RHS : -

sec⁴θ - sec²θ

= 1/cos⁴θ - 1/cos²θ

= (1 - cos²θ)/cos⁴θ

= sin²θ/cos⁴θ. [Because , 1 - cos²θ = sin²θ]

Therefore,

tan²θ + tan⁴θ = sin²θ/cos⁴θ

Also,

sec⁴θ - sec²θ = sin²θ/cos⁴θ

So,

tan²θ + tan⁴θ = sec⁴θ - sec²θ

Hence, proved.

HOPE IT HELPS
Similar questions