show that tan ^2 tita + tan^4 tita = sec^4 tita - sec^2 tita
Answers
Answered by
11
HEY mate here is your answer.
hope it helps you
hope it helps you
Attachments:
Answered by
7
Hi friend
---------------
Your answer
--------------------
To prove : - tan²θ + tan⁴θ = sec⁴θ - sec²θ
Now,
LHS : -
tan²θ + tan⁴θ
= sin²θ/cos²θ + sin⁴θ/cos⁴θ
= (sin²cos²θ + sin⁴θ)/cos⁴θ
=> [sin²θ(cos²θ + sin²θ)]/cos⁴θ
=> (sin²θ × 1)/cos⁴θ. [Because , sin²θ + cos²θ = 1 ]
=> sin²θ/cos⁴θ
Again ,
RHS : -
sec⁴θ - sec²θ
= 1/cos⁴θ - 1/cos²θ
= (1 - cos²θ)/cos⁴θ
= sin²θ/cos⁴θ. [Because , 1 - cos²θ = sin²θ]
Therefore,
tan²θ + tan⁴θ = sin²θ/cos⁴θ
Also,
sec⁴θ - sec²θ = sin²θ/cos⁴θ
So,
tan²θ + tan⁴θ = sec⁴θ - sec²θ
Hence, proved.
HOPE IT HELPS
---------------
Your answer
--------------------
To prove : - tan²θ + tan⁴θ = sec⁴θ - sec²θ
Now,
LHS : -
tan²θ + tan⁴θ
= sin²θ/cos²θ + sin⁴θ/cos⁴θ
= (sin²cos²θ + sin⁴θ)/cos⁴θ
=> [sin²θ(cos²θ + sin²θ)]/cos⁴θ
=> (sin²θ × 1)/cos⁴θ. [Because , sin²θ + cos²θ = 1 ]
=> sin²θ/cos⁴θ
Again ,
RHS : -
sec⁴θ - sec²θ
= 1/cos⁴θ - 1/cos²θ
= (1 - cos²θ)/cos⁴θ
= sin²θ/cos⁴θ. [Because , 1 - cos²θ = sin²θ]
Therefore,
tan²θ + tan⁴θ = sin²θ/cos⁴θ
Also,
sec⁴θ - sec²θ = sin²θ/cos⁴θ
So,
tan²θ + tan⁴θ = sec⁴θ - sec²θ
Hence, proved.
HOPE IT HELPS
Similar questions