Math, asked by siddhijain09875, 1 year ago

show that tan 48 ° tan 23° tan 42° tan 67°=1​

Answers

Answered by Manirudh3
4

Answer:

tan 48.tan42 = tan 90 = 1

tan23.tan67 = tan90 = 1

so tan 90.tan90 = 1

which is equal to RHS

PROVED.

Step-by-step explanation:

Mark As Brainliest if u feel like.

Answered by Anonymous
9

Given:

  • tan 48° tan 23° tan 42° tan 67° = 1

Solution

We can also write tan functions in terms of cot functions,

 \\ \colon\implies{\tt{ tan \ 48° = tan \ (90° – 42°) = cot \ 42° }} \\ \\ \\ \colon\implies{\tt{tan \ 23° = tan \ (90° – 67°) = cot \ 67° }} \\

Hence,

Substituting these values,

 \\ \colon\implies{\tt{ cot \ 42° \ cot \ 67° \ tan \ 42° \ tan \ 67° }} \\ \\ \\ \colon\implies{\tt{ (cot \ 42° tan \ 42°) (cot \ 67° \ tan 67°) }} \\ \\ \\ \colon\implies{\tt{ 1 \times 1 }} \: \: \: \: \: {\sf\red{[Since \ cot \ A.tan \ A = 1]}} \\ \\ \\ \colon\implies{\boxed{\tt\gray{ 1 }}} \\

Hence Proved ..!

Similar questions