show that tan⁴theta +tan²theta=sec⁴theta-sec²theta
Answers
Answered by
12
RHS sec^4theta-sec^2theta
===(sec^2theta)^2-sectheta^2
===(1+tan^2)^2-sec^2
===1+tan^4+2tan^2-(1+tan^2)
===1+tan^4+2tan^2-1-tan^2
===tan^4+tan^2. LHS PROVED...
HOPE IT HELP YOU....
===(sec^2theta)^2-sectheta^2
===(1+tan^2)^2-sec^2
===1+tan^4+2tan^2-(1+tan^2)
===1+tan^4+2tan^2-1-tan^2
===tan^4+tan^2. LHS PROVED...
HOPE IT HELP YOU....
colourlesking:
thanks it helped a lot
Answered by
25
Step-by-step explanation:
Given,
tan⁴∅+tan²∅=sec⁴∅-sec²∅
L.H.S
sec⁴∅-sec²∅
sec²∅(sec²∅-1)
(1+tan²∅)(1+tan²-1) [∴sec²∅-1+tan²∅]
(1+tan²∅)(tan²∅)
tan²∅+tan⁴∅
L.H.S=R.H.S
Similar questions