Math, asked by JINKHAN, 8 months ago

Show that the angles of
equila teral triangle
an
are 60 each​

Answers

Answered by prohelper007
1

Answer:

mrk as brainliesst plz plz i need it

Step-by-step explanation:

In a ∆ABC,

AB=BC=CA

therefore, Angle ABC= Angle BCA = Angle CAB =x (Angles opposite to equal sides of a ∆ are equal)

therefore, x+x+x=180° (Sum of angles of a ∆)

= 3x=180°

x=60°

Hence, Proved.

Answered by sethrollins13
25

Given :

  • AB = BC = AC

To Prove :

  • ∠A = ∠B = ∠C = 60°

Solution :

Let an equilateral triangle ABC.

\longmapsto\tt{AB=AC}

\longmapsto\tt{\angle{A}=\angle{C}\:(Angles\:equal\:to\:opp.\:sides)---(1)}

\longmapsto\tt{BC=AC}

\longmapsto\tt{\angle{A}=\angle{B}---(2)}

By Equation 1 and 2 :

\longmapsto\tt{\angle{A}=\angle{B}=\angle{C}}

\longmapsto\tt{\angle{A}=\angle{B}=\angle{C}=180\degree\:(A.S.P)}

\longmapsto\tt{\angle{A}+\angle{A}+\angle{A}=180\degree}

\longmapsto\tt{3\angle{A}=180\degree}

\longmapsto\tt{\angle{A}=\cancel\dfrac{180}{3}}

\longmapsto\tt\bf{\angle{A}=60\degree}

Therefore :

\longmapsto\tt\bf{\angle{A}=60\degree}

\longmapsto\tt\bf{\angle{B}=60\degree}

\longmapsto\tt\bf{\angle{C}=60\degree}

HENCE PROVED

Attachments:
Similar questions