Math, asked by mohammadtaha828w, 1 day ago

. Show that the diagonals of a parallelogram divide it into four triangles of equal area.​

Answers

Answered by Anonymous
18

Question :-

Show that the diagonals of a parallelogram divide it into four triangles of equal area

Answer :-

Given :

 \colorbox{black}{\colorbox{red}{\colorbox{white}{ABCD\:is\:a\: parallelograml}}}

To show :

  • ar (∆ABO) = ar (∆BCO)

= ar (∆CDO)

= ar (∆DAO)

Proof :

\rightarrow In parallelogram ABCD

\rightarrow Diagonals AC and BD of bisect each other

\therefore OA = OC and OB = OD

\rightarrow [ O is the midpoint of AC and BD ]

Now ,

\\tt\:\sf\small\implies \colorbox{black}{\colorbox{white}{\colorbox{white}{In \: ∆ABC}}}

\because OA = OC , and BO is the median of ∆ABC,

So,

 \tt\:\sf\small\colorbox{black}{\colorbox{Black}{\colorbox{white}{ar\:(∆ABO)\:=\:ar\:(∆BCO)}}}

\rightarrow Median divides into two equal area ...(i)

Similarly,

\sf\huge\implies \tt\:ar (∆ADO) = ar (∆CDO)...(ii)

\sf\huge\implies \tt\:ar (∆ADO) = ar (∆ABO)....(iii)

\sf\huge\implies\tt\: ar (∆ADO) = ar (∆CDO)...(iv)<strong> </strong>

From There ,

\sf\huge\implies ar (ABO) = ar (BCO)

\sf\huge\implies = ar(CDO)

\sf\huge\implies = ar (DAO)

\sf\huge\implies Hence proved

Therefore,

\tt\:	ar (∆ABO) = ar (∆BCO) = ar (∆CDO) = ar (∆DAO )

Hence , diagonals of a parallelogram into four congruent (equal area) triangles

Note : scroll left to right to see full answer

Attachments:
Similar questions