Math, asked by borkarsneha440, 10 months ago

show that the line x-y = 5 is a tangent to the ellipse 9x^+16y^ = 144 find the point of contact.​

Answers

Answered by mysticd
2

 Given \: Equation \: 9x^{2} + 16y^{2} = 144

/* Dividing each term by 144, we get */

 \implies \frac{9x^{2}}{144} + \frac{16y^{2}}{144} = \frac{144}{144}

 \implies \frac{x^{2}}{16} + \frac{y^{2}}{9} = 1

 a^{2} = 16,\: b^{2} = 9

 Given \: tangent \: x - y = 5 .

 \implies y = x - 5 \: Compare \:this \:with \\y = mx + c , we \:get

 m = 1 \: and \: c = - 5

/* The condition that the line y = mx+c may be a tangent to the ellipse

 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}= 1 \\is \: c^{2} = a^{2}m^{2} + b^{2}

 \implies (-5)^{2} = 16 \times  1^{2} + 9

 \implies 25 = 16 + 9

 Here, c = -5 \: but \: c \neq 5

 Now, point \:of \: contact ( x_{1} , y_{1} ) \\= \Big( \frac{-a^{2}m}{c}, \frac{b^{2}}{c}\Big)

 = \Big( \frac{-16 \times 1 }{-5} , \frac{9}{-5}\Big) \\= \Big( \frac{16}{5} , \frac{-9}{5}\Big)

•••♪

Attachments:
Similar questions