show that the logical sum of all minterms of a boolean function of n variables is 1
Answers
Answered by
23
I used ' for not and variables a, b, c
S = abc+ abc'+ ab'c+ ab'c'+ a'bc+ a'bc'+ a'b'c+ a'b'c' =
ab(c+c') + ab'(c+c')+ a'b(c+c')+ a'b'(c+c')=
ab+ab'+ a'b+a'b'=
a(b+b')+ a'(b+b')=
a+ a' = 1
We know that x+ x' =1
S = abc+ abc'+ ab'c+ ab'c'+ a'bc+ a'bc'+ a'b'c+ a'b'c' =
ab(c+c') + ab'(c+c')+ a'b(c+c')+ a'b'(c+c')=
ab+ab'+ a'b+a'b'=
a(b+b')+ a'(b+b')=
a+ a' = 1
We know that x+ x' =1
Answered by
13
Step-by-step explanation
Taking the value of N = 3
To prove :
The logical sum of all minterms is 1
S = abc + abc' + ab'c + ab'c' + a'bc + a'bc' + a'b'c + a'b'c'
= ab ( c + c' ) + ab' ( c + c' ) + a'b ( c + c' ) + a'b'( c + c' )
We know,
a + a' = 1
Applying this we get,
= ab ( 1 ) + ab' ( 1 ) + a'b ( 1 ) + a'b'( 1 )
= ab + ab' + a'b + a'b'
= a ( b + b' ) + a'( b + b' )
= a ( 1 ) + a' ( 1 )
= a + a '
= 1
Hence Proved !
Similar questions