Show that the square of any positive integer cannot be of the form 5q + 2 or
5q + 3 for any integer q.
Answers
Answered by
2
Answer:
Number divisible by 5 can be of the form:-
d = 5m + r,
where 0 ≤ r <5
If d = 5m, d² = 5.q,
where q is some integer and q = 5m²
If d = 5m + 1, d² = 5q + 1
If d = 5m + 2, d² = 5q + 4
If d = 5m + 3, d² = 5q + 4
If d = 5m + 4, d² = 5q + 1
Therefore, the square of any positive integer cannot be in the form of 5q + 2 or 5q + 3 for any integer "q".
Similar questions