Physics, asked by 4545595, 10 months ago

Show that vectors a = 2i + 5j -6k and
b=i+5/2j^-3k^ are parallel.​

Answers

Answered by rahiniagash
43

Two vectors A and B are parallel if and only if they are scalar multiples of one another.

Here b=1/2a. Therefore theyare parallel

Answered by pinquancaro
202

Answer and Explanation:

Given : Vectors \vec{a}=2i+5j-6k and \vec{b}=i+\frac{5}{2}j-3k

To find : Show that vectors are parallel?

Solution :

When two vectors are parallel then \vec{u}\cdot\vec{v}=|a||b|

So we find the dot product of vectors,

\vec{a}\cdot\vec{b}=(2i+5j-6k)\cdot(i+\frac{5}{2}j-3k)

\vec{a}\cdot\vec{b}=2\times 1+5\times\frac{5}{2}+(-6)\times (-3)

\vec{a}\cdot\vec{b}=2+\frac{25}{2}+18

\vec{a}\cdot\vec{b}=20+\frac{25}{2}

\vec{a}\cdot\vec{b}=\frac{40+25}{2}

\vec{a}\cdot\vec{b}=\frac{65}{2} ...(1)

Now, we find the magnitude,

\vec{a}=2i+5j-6k

|\vec{a}|=\sqrt{2^2+5^2+(-6)^2}

|\vec{a}|=\sqrt{4+25+36}

|\vec{a}|=\sqrt{65}

\vec{b}=i+\frac{5}{2}j-3k

|\vec{b}|=\sqrt{1^2+(\frac{5}{2})^2+(-3)^2}

|\vec{b}|=\sqrt{1+\frac{25}{4}+9}

|\vec{b}|=\sqrt{\frac{4+25+36}{4}}

|\vec{b}|=\sqrt{\frac{65}{4}}

|\vec{b}|=\frac{\sqrt{65}}{2}

So, |a||b|=\sqrt{65}\times \frac{\sqrt{65}}{2}

|a||b|=\frac{65}{2} ...(2)

Since, (1) and (2) are equal so the vectors are parallel.

Similar questions