Math, asked by S0rav, 1 year ago

Simple question for 25 points solve it right now
Solve tan²θ + cot²θ = 2

Answers

Answered by Anonymous
0
Hey friend here is ur answer-:
Attachments:
Answered by anindyaadhikari13
1

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Solve the given equation.

\star\:\:\:\sf\large\underline\blue{Solution:-}

Given equation:-

 \boxed{ \sf \tan^{2} \theta  +  \cot^{2}   \theta = 2  }

   \sf\implies { \tan }^{2}  \theta +  \frac{1}{ { \tan }^{2} \theta  }  = 2

 \sf let \: a =  \tan \theta

Therefore,

 \sf {a}^{2}  +  \frac{1}{ {a}^{2} }  = 2

 \sf \implies {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 = 0

 \sf \implies {(a -  \frac{1}{a} )}^{2}  = 0

 \sf \implies {(a -  \frac{1}{a} )}  = 0

 \sf \implies a =  \frac{1}{a}

 \sf \implies  {a}^{2}  =  1

 \sf \implies  { \tan }^{2} \theta  =  1

 \sf \implies  { \tan } \:  \theta  =  1

 \sf \implies \theta  =   \tan^{ - 1} (1)

 \sf \implies \theta  =  45 \degree

\star\:\:\:\sf\large\underline\blue{Answer:-}

  •  \sf \theta  =  45 \degree
Similar questions