simplify 1 by root 3 + root 2 minus 2 by root 5 minus root 3 minus 3 by root 2 minus root 5
Answers
Answered by
5
Answer:
2/(√5 +√3) + 1/(√3 +√2) - 3/(√5 +√2) = 0
Solution :-
We need to find the value of ;
2/(√5 + √3) + 1/(√3 + √2) - 3/(√5 + √2)
Now ,
• 2/(√5 + √3)
= 2(√5 - √3) / (√5 + √3)•(√5 - √3)
= 2(√5 - √3) / [ (√5)² - (√3)² ]
= 2(√5 - √3) / (5 - 3)
= 2(√5 - √3) / 2
= √5 - √3
• 1/(√3 + √2)
= (√3 - √2) / (√3 + √2)•(√3 - √2)
= (√3 - √2) / [ (√3)² - (√2)² ]
= (√3 - √2) / (3 - 2)
= (√3 - √2) / 1
= √3 - √2
• 3/(√5 + √2)
= 3(√5 - √2) / (√5 + √2)•(√5 - √2)
= 3(√5 - √2) / [ (√5)² - (√2)² ]
= 3(√5 - √2) / (5 - 2)
= 3(√5 - √2) / 3
= √5 - √2
Now ,
2/(√5 + √3) + 1/(√3 + √2) - 3/(√5 + √2)
= (√5 - √3) + (√3 - √2) - (√5 - √2)
= √5 - √3 + √3 - √2 - √5 + √2
= 0
Hence ,
2/(√5 +√3) + 1/(√3 +√2) - 3/(√5 +√2) = 0
Similar questions