Math, asked by Rythm14, 1 year ago

Simplify....................

Attachments:

Answers

Answered by lublana
1

 (1^3+2^3+3^3+4^3+5^3)^{-\frac{1}{2}}

 =(1+8+27+64+125)^{-\frac{1}{2}}

 =(225)^{-\frac{1}{2}}

 =\frac {1}{225^{\frac{1}{2}}}

 =\frac {1}{\sqrt{225}}

 =\frac {1}{15}

Hence final answer is  \frac {1}{15} .


Rythm14: Thank ku
Answered by codiepienagoya
0

Simplify:

Step-by-step explanation:

\ Given \ that:\\\\(\ 1^3 \ + \ 2^3 \ + \ 3^3 \ + \ 4^3 \ +5^3)^{\ - \frac{1}{2}} \\\\\ Find: \\\\\ Sum \ = \ ?

\ Solve: \\\\

\therefore \ a^3= a\times \ a\times \ a\\\\\\\because \\\\\ 1^3 =\ 1\times \ 1 \times 1 \ = \ 1\\\\2^3\ = \ 8\\\\3^3\ = \ 27\\\\4^3\ = \ 64\\\\5^3 \ = \ 125\\\\

\rightarrow (\ 1^3 \ + \ 2^3 \ + \ 3^3 \ + \ 4^3 \ +5^3)^{\ - \frac{1}{2}} \\\\\rightarrow (\ 1 \ + \ 8 \ + \ 27 \ + \ 64 \ +125)^{\ - \frac{1}{2}} \\\\\rightarrow (225)^{\ - \frac{1}{2}} \\\\\rightarrow {\frac{1}{225}} \\\\

Learn more:

Simplify: https://brainly.in/question/8913062

Similar questions