simplify (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)
Answers
Answer:
Step-by-step explanation:
(a+b)(a-b)+(b+c)(b-c)+(c+a)(c-a),
=(a²-b²)+(b²-c²)+(c²-a²),
=(a²-b²+b²-c²+c²-a²),
In this case, each variable cancels it's negative version.
= 0
NOW, THAT'S THE CORRECT ANSWER.
(a + b)(a - b) + (b + c)(b - c) + (c + a)(c - a) = 0
Given :
(a + b)(a - b) + (b + c)(b - c) + (c + a)(c - a)
To find :
The value of the expression
Solution :
Step 1 of 2 :
Write down the given expression
The given expression is
(a + b)(a - b) + (b + c)(b - c) + (c + a)(c - a)
Step 2 of 2 :
Find the value of the expression
We use
a² - b² = ( a + b ) ( a - b )
b² - c² = ( b + c ) ( b - c )
c² - a² = ( c + a ) ( c - a )
Hence the given expression
= (a + b)(a - b) + (b + c)(b - c) + (c + a)(c - a)
= a² - b² + b² - c² + c² - a²
= a² - a² + b² - b² + c² - c²
= 0 + 0 + 0
= 0
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
divide : (4x²- 100) ÷ 6(x+5)
https://brainly.in/question/15559404
2. Find the value of the expression a² – 2ab + b² for a = 1, b = 1
https://brainly.in/question/28961155