Math, asked by anupamtyagi4916, 10 months ago

Simplify by method of factori
 {z}^{2}  -  {8}^{2}  + 15
 {z - 25}^{2}

Answers

Answered by LeParfait
1

Correcting the given question :

We have to factorize the following -

1. z² - 8z + 15

2. z² - 25

1.

Now, z² - 8z + 15

[ here 15 can be written as 5 × 3 and 5 + 3 = 8 ]

= z² - (5 + 3) z + 15

= z² - 5z - 3z + 15

= z (z - 5) - 3 (z - 5)

[ taking (z - 5) common from both terms ]

= (z - 5) (z - 3)

This is the required factorization.

2.

Now, z² - 25

= z² - 5²

[ we use the formula: a² - b² = (a + b) (a - b) ]

= (z + 5) (z - 5)

This is the required factorization.

Answered by Anonymous
6

correct Question :

Factorize ;

1) \:  z {}^{2}  - 8 {}^{2}  + 15

2) \: z {}^{2}  - 25

Solution :

1) z² -8² +15

= z² -64 + 15

= z² -49

= z²- 7²

[use identity (a+b) (a-b) = a² - b²]

= (z+7) (z-7)

2) z² -25

= z² - 5 ²

[use identity (a+b) (a-b) = a² - b²]

= (z+5) (z-5)

___________________________

\Large\boxed{\green{More \: Algebraic\:   identies }}

  • ( a+b) ² = a² + b²+2ab

  • ( a-b) ² = a² + b²- 2ab

if any doubt ask .

Similar questions