Simplify:
Class 10
--------------
Answers
Answer:
The answer for the above given simplification is 1.
Step-by-step explanation:
Given Equation: [(sin³θ+cos³θ)/(sinθ + cosθ)] + (sinθcosθ)
Lets break down the above equation into simple steps to get the answer.
Applying the Algebraic formula , a³ + b³ = (a + b)(a² - ab + b²)
= [{(sinθ+cosθ)(sin²-sinθcosθ+cos²θ)}/(sinθ + cosθ)] + (sinθcosθ)
= sin²θ - sinθcosθ + cos²θ + sinθcosθ …. [cancelling (sinθ+cosθ) from numerator and denominator]
= sin²θ + cos²θ
= 1 ….. [ Trignometric identity : sin²θ + cos²θ = 1]
Answer:
(Sin³θ + Cos³θ )/(sinθ + Cosθ) + SinθCosθ = 1
Step-by-step explanation:
(Sin³θ + Cos³θ )/(sinθ + Cosθ) + SinθCosθ
= (Sin³θ + Cos³θ )/(sinθ + Cosθ) + SinθCosθ(sinθ + Cosθ)/(sinθ + Cosθ)
= (Sin³θ + Sin²θCosθ+ Cos³θ + SinθCos²θ)/(sinθ + Cosθ)
= (Sin³θ + Sin²θCosθ + Cos³θ + SinθCos²θ)/(sinθ + Cosθ)
= (Sin²θ(Sinθ + Cosθ) + Cos²θ(Cosθ + Sinθ)/(sinθ + Cosθ)
= (Sin²θ(Sinθ + Cosθ) + Cos²θ(Sinθ + Cosθ)/(sinθ + Cosθ)
= (Sin²θ + Cos²θ)(Sinθ + Cosθ)/(sinθ + Cosθ)
= (Sin²θ + Cos²θ)
= 1
(Sin³θ + Cos³θ )/(sinθ + Cosθ) + SinθCosθ = 1