Math, asked by vadlasaisusmitha, 5 months ago

Simplify: (l-m) (m-n) + (m-n) (n-l) – (n-l) (l-m)​

Answers

Answered by mantu9000
3

We have:

(l - m)(m - n) + (m - n)(n - l) – (n - l)(l - m)​

We have to simply the given expression.

Solution:

(l - m)(m - n) + (m - n)(n - l) – (n - l)(l - m)​

Open the bracket, we get

= {lm - ln - m^{2} + mn} + {mn - ml - n^{2} + nl} - {nl - nm - l^{2} + lm}

= lm - ln - m^{2} + mn + mn - ml - n^{2} + nl - nl + nm + l^{2} - lm

=  l^{2} - m^{2} - n^{2} - lm - nl + 3mn

∴ (l - m)(m - n) + (m - n)(n - l) – (n - l)(l - m)​ =  l^{2} - m^{2} - n^{2} - lm - nl + 3mn

Thus, the value of the given expression is  "l^{2} - m^{2} - n^{2} - lm - nl + 3mn".

Answered by AditiHegde
3

Given:

(l-m) (m-n) + (m-n) (n-l) – (n-l) (l-m)​

To find:

Simplify, (l-m) (m-n) + (m-n) (n-l) – (n-l) (l-m)​

Solution:

From given, we have the data as follows.

(l - m) (m - n) + (m - n) (n - l) - (n - l) (l - m)​

= lm - ln - m² + mn + mn - ml - n² + nl - nl + nm + l² - lm

= - ln - m² + mn + mn - ml - n² + nl - nl + nm + l²

= - ln - m² + mn + mn - ml - n² + nm + l²

= - ln - m² + 3mn - ml - n² + l²

= 3mn - m² - n² + l² - l (m + n)

∴ (l - m) (m - n) + (m - n) (n - l) - (n - l) (l - m)​ = 3mn - m² - n² + l² - l (m + n)

Similar questions