Simplify: (l-m) (m-n) + (m-n) (n-l) – (n-l) (l-m)
Answers
We have:
(l - m)(m - n) + (m - n)(n - l) – (n - l)(l - m)
We have to simply the given expression.
Solution:
∴ (l - m)(m - n) + (m - n)(n - l) – (n - l)(l - m)
Open the bracket, we get
= {lm - ln - + mn} + {mn - ml - + nl} - {nl - nm - + lm}
= lm - ln - + mn + mn - ml - + nl - nl + nm + - lm
= - - - lm - nl + 3mn
∴ (l - m)(m - n) + (m - n)(n - l) – (n - l)(l - m) = - - - lm - nl + 3mn
Thus, the value of the given expression is " - - - lm - nl + 3mn".
Given:
(l-m) (m-n) + (m-n) (n-l) – (n-l) (l-m)
To find:
Simplify, (l-m) (m-n) + (m-n) (n-l) – (n-l) (l-m)
Solution:
From given, we have the data as follows.
(l - m) (m - n) + (m - n) (n - l) - (n - l) (l - m)
= lm - ln - m² + mn + mn - ml - n² + nl - nl + nm + l² - lm
= - ln - m² + mn + mn - ml - n² + nl - nl + nm + l²
= - ln - m² + mn + mn - ml - n² + nm + l²
= - ln - m² + 3mn - ml - n² + l²
= 3mn - m² - n² + l² - l (m + n)
∴ (l - m) (m - n) + (m - n) (n - l) - (n - l) (l - m) = 3mn - m² - n² + l² - l (m + n)