Math, asked by suprabhapurvey, 8 months ago

Simplify:
 \sqrt[4]{81}  - 8 \sqrt[3]{216}  + 15 \sqrt[5]{32}  +  \sqrt{225}

Answers

Answered by Anonymous
3

Question :

 \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt{225}

Answer :

\bold0

Explanation :

 \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt{225}

 \sqrt[4]{3^4} - 8 \sqrt[3]{6^3} + 15 \sqrt[5]{2^5} + \sqrt{15^2}

3\:-\:(\:8\:×\:6\:)\:+\:(\:15\:×\:2\:)\:+\:15

3\:-\:48\:+\:30\:+\:15

48\:-\:48

\bold0

Steps :

  •  \sqrt[4]{81} can be written as  \sqrt[4]{3^4} \boxed{3×3×3×3=81}

  • 8 \sqrt[3]{216} can be written as  8 \sqrt[3]{6^3} \boxed{6×6×6=216}

  • 15 \sqrt[5]{32} can be written as 5 \sqrt[5]{2^5} \boxed{2×2×2×2×2=32}

  •  \sqrt{225} can be written as  \sqrt{15^2} \boxed{15×15=225}

Cancellation :

{\cancel{4}}\sqrt3^{\cancel{4}} - 8\:{\cancel{3}}\sqrt6^{\cancel{3}} + 15\:{\cancel{5}}\sqrt2^{\cancel{5}}

So, It's Done !!

Similar questions