Math, asked by PragyaTbia, 1 year ago

Simplify the given and express in the form of a + ib.
\frac{5+7i}{4+3i} +\frac{5+7i}{4-3i}

Answers

Answered by hukam0685
7
Solution:

To express the given expression in the form of a + ib ,take LCM

\frac{5+7i}{4+3i} +\frac{5+7i}{4-3i} \\  \\  =  \frac{(5 + 7i)(4 - 3i) + (5 + 7i)(4 + 3i)}{(4 + 3i)(4 - 3i) }  \\  \\  \frac{20 - 15i + 28i - 21 {i}^{2}  + 20 + 15i + 28i + 21 {i}^{2} }{16 +9 }  \\  \\  =  \frac{40 + 56i + 21 - 21}{25}  \\  \\  =  \frac{40 + 56i}{25}  \\  \\ a + ib =  \frac{40 }{25}  + i \frac{56}{25}  \\  \\ a + ib =  \frac{8 }{5}  + i \frac{56}{25}  \\ \\so \\  \\  a =  \frac{8}{5}  \\  \\ b =  \frac{56}{25}  \\  \\
Hope it helps you.
Similar questions