Math, asked by Bhumikashinde, 1 year ago

Simplify this equation

Attachments:

Answers

Answered by Incredible29
11
Heya user,
Here is your answer !!

[ Refer to the picture attached for the answer ]

If you have any doubts, please post in the comments section.

HOPE IT HELPS !!
Attachments:

Bhumikashinde: Thanks
Answered by Anonymous
3

\underline{\underline{\bold{Question:}}}

\bold{\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt2+\sqrt3}+\dfrac{1}{\sqrt3+\sqrt4}+......+\dfrac{1}{\sqrt8+\sqrt9}}

\underline{\bold{Solution:}}

\bold{\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt2+\sqrt3}+\dfrac{1}{\sqrt3+\sqrt4}+......+\dfrac{1}{\sqrt8+\sqrt9}}

\underline{\bold{By\:Rationalizing\:it\:we\:get,}}

\bold{\dfrac{1{\times}(\sqrt2-1)}{(\sqrt{2}+1)(\sqrt2-1)}+\dfrac{1{\times}(\sqrt3-\sqrt2)}{(\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}+\dfrac{1{\times}(\sqrt4-\sqrt3)}{(\sqrt4+\sqrt3)(\sqrt4-\sqrt3)}+......+\frac{1{\times}(\sqrt9-\sqrt8)}{(\sqrt9+\sqrt8)(\sqrt9-\sqrt8)}}

\boxed{\bold{a^2-b^2=(a+b)(a-b)}}

\bold{=\sqrt2-1+\sqrt3-\sqrt2+\sqrt4-\sqrt3+......+\sqrt9-\sqrt8}\\\\\\\bold{=\sqrt9-1.}

\bold{=3-1=2.}\\\\\\\boxed{\boxed{\bold{Answer=2.}}}

\underline{\bold{Identity:}}\\\\\\\bold{1.(a+b)^2=a^2+2ab+b^2}\\\\\\\bold{2.(a-b)^2=a^2-2ab-b^2}\\\\\\\bold{3.\:a^2+b^2=(a+b)^2-2ab}\\\\\\\bold{4.\:a^2+b^2=(a-b)^2+2ab}

Similar questions