Math, asked by tanwisaha8, 11 months ago

Sin^-1 3/5+cosec^-1 5/4​

Answers

Answered by Anonymous
32

Question :

\sf{\sin{}^{-1}\frac{3}{5}+\cosec{}^{-1}\frac{5}{4}}

Formula's Used :

1) Conversion Property :

\sf{\sin{}^{-1}x=\cosec{}^{-1}\dfrac{1}{x}}

\sf{\cosec{}^{-1}x=\sin{}^{-1}\dfrac{1}{x}}

2) Property

\sf{\sin{}^{-1}x+\sin{}^{-1}y=\sin{}^{-1}(x\sqrt{1-y^2}+y\sqrt{1-x^2})}

Solution :

We have ,

\sf{\sin{}^{-1}\frac{3}{5}+\cosec{}^{-1}\frac{5}{4}}

\sf{=\sin{}^{-1}\frac{3}{5}+\sin{}^{-1}\frac{4}{5}}

\sf{=\sin{}^{-1}[\frac{3}{5}\sqrt{1-(\frac{4}{5})^2}+\frac{4}{5}\sqrt{1-(\frac{3}{5})^2}]}

\sf{=\sin{}^{-1}[\frac{3}{5}\sqrt{1-\frac{16}{25}}+\frac{4}{5}\sqrt{1-\frac{9}{25}}]}

\sf{=\sin{}^{-1}[\frac{3}{5}\sqrt{\frac{25-16}{25}}+\frac{4}{5}\sqrt{\frac{25-9}{25}}]}

\sf{=\sin{}^{-1}[\frac{3}{5}\times\frac{3}{5}+\frac{4}{5}\times\frac{4}{5}]}

\sf{=\sin{}^{-1}[\frac{9}{25}+\frac{16}{25}]}

\sf{=\dfrac{\pi}{2}}

Answered by snehabharti20
17

Answer:

Refer to the attachment mate.......

Attachments:
Similar questions