Math, asked by nikhilkumar1102, 11 months ago

∫sin⁻¹(cosx) dx बराबर है
(a) x(π/2) – (x²/2) – C
(b) x(π/2) + (x²/2) – C
(c) x(π/2) + (x²/2) + C
(d) x(π/2) – (x²/2) + C

Answers

Answered by harendrachoubay
0

The required option D) \dfrac{\pi}{2}x-\dfrac{x^2}{2} +C is correct.

Step-by-step explanation:

Let I = \int {\sin^{-1}(cosx) dx} \,

\int {\sin^{-1}(cosx) dx} \, = ?

∴ I = \int {\sin^{-1}(cosx) dx} \,

= \int {\sin^{-1}(\sin(\dfrac{\pi}{2}-x) ) dx} \,

Using the trigonometric identity,

\cos A=\sin(\dfrac{\pi}{2}-A)

= \int {(\dfrac{\pi}{2}-x) dx} \,

Using the trigonometric inverse function identity,

\sin^{-1}(\sin x) =x

= \dfrac{\pi}{2}x-\dfrac{x^2}{2} +C

Where, C is called integration constant.

Thus, the required option D) \dfrac{\pi}{2}x-\dfrac{x^2}{2} +C is correct.

Answered by jitendra420156
0

Answer:

\int sin^{-1}(cos x)dx =x\frac{\pi}{2}-\frac{x^2}{2}  +C

Step-by-step explanation:

\int sin^{-1}(cos x)dx

=\int sin^{-1}(sin(\frac{\pi}{2} - x))dx

=\int (\frac{\pi}{2}-x )dx

=x\frac{\pi}{2}-\frac{x^2}{2}  +C

Similar questions