sin ( 1 + tan ) + cos ( 1 + cot ) = sec + cosec
Answers
Answered by
2
Sin (1 + tan) + cos (1 + cot) = sec + cosec
⇒ LHS = sin (1 + tan) + cos (1 + )
⇒ sin (1 + tan) + cos
⇒ (1 + tan) (sin + )
⇒ (1 + tan)
⇒
⇒ (1 + tan)(sin^2 + cos^2) ÷ tan × cos
⇒ (1 + tan) ÷ tan × cos
⇒ × cos ) + × cos
⇒
⇒ cosec + sec
LHS = RHS Proved
Anonymous:
Mark as brainliest
Answered by
2
Answer:
sin (1+tan) + cos (1+cot)
= sin + sin*sin/cos + cos + cos*cos/sin ( as tan = sin/cos and cot = cos /sin)
= ( sin + cos*cos/sin ) + ( cos + sin*sin/cos )
= (sin*sin+cos*cos)/sin + ( cos*cos + sin*sin)/cos
= 1/sin +1/cos ( as sin*sin + cos*cos = 1 )
= cosec + sec ( as 1/sin = cosec and 1/cos = sec )
Hence Proved.
Similar questions