Math, asked by nandanv99, 1 year ago

sin ( 1 + tan ) + cos ( 1 + cot ) = sec + cosec

Answers

Answered by Anonymous
2

Sin (1 + tan) + cos (1 + cot) = sec + cosec


⇒ LHS = sin (1 + tan) + cos (1 + \bf\huge\frac{1}{tan})


⇒ sin (1 + tan) + cos \bf\huge\frac{1+tan}{tan}


⇒ (1 + tan) (sin + \bf\huge\frac{cos}{tan} )


⇒ (1 + tan) \bf\huge\frac{(sin\times tan+cos)}{tan}


\bf\huge\frac{sin^2}{cos+cos} /tan


⇒ (1 + tan)(sin^2 + cos^2) ÷ tan × cos


⇒ (1 + tan) ÷ tan × cos


\bf\huge\frac{1}{tan} × cos ) + \bf\huge\frac{tan}{tan} × cos


\bf\huge\frac{cot}{cos} + \frac{1}{cos}


⇒ cosec + sec


LHS = RHS     Proved


Anonymous: Mark as brainliest
nandanv99: marked bro
Anonymous: Thanx
nandanv99: if any body is harworking so who i am to to stop who is hardworking
Answered by playnetjupiter80
2

Answer:

sin (1+tan) + cos (1+cot)

= sin + sin*sin/cos + cos + cos*cos/sin         ( as tan = sin/cos and cot = cos /sin)

= ( sin + cos*cos/sin ) + ( cos + sin*sin/cos )

=  (sin*sin+cos*cos)/sin  +   ( cos*cos + sin*sin)/cos

=  1/sin +1/cos                                  ( as sin*sin + cos*cos = 1 )

= cosec + sec                                   ( as 1/sin = cosec and 1/cos = sec )

                                         

                                                                                      Hence Proved.            

                       

Similar questions