Math, asked by sehar7749, 1 year ago

sin(2cos ^-1 (-3/5)) is equal to (a)6/25 (b)24/25 (c)4/5 (d) –24/25

Answers

Answered by Pitymys
1

We have if

 \cos \theta =x\\<br /> \theta =\cos ^{-1} x\\<br />\cos 2\theta=2\cos^2 \theta -1\\<br />\cos 2\theta=2x ^2-1\\<br />2\theta =\cos ^{-1} (2x ^2-1)\\<br />2\cos ^{-1} x=\cos ^{-1} (2x ^2-1)

Here  x=-\frac{3}{5}

 2\cos ^{-1} (-\frac{3}{5})=\cos ^{-1} (2(-\frac{3}{5}) ^2-1)\\<br />2\cos ^{-1} (-\frac{3}{5})=\cos ^{-1} (-\frac{7}{25}) \\<br />\sin [2\cos ^{-1} (-\frac{3}{5})]=\sin[\cos ^{-1} (-\frac{7}{25}) ]\\<br />\sin [2\cos ^{-1} (-\frac{3}{5})]=\sin[\sin ^{-1}(-\sqrt{1- (\frac{7}{25}) ^2})] \\<br />\sin [2\cos ^{-1} (-\frac{3}{5})]=\sin[\sin ^{-1}(-\sqrt{ (\frac{24}{25}) ^2})] \\<br />\sin [2\cos ^{-1} (-\frac{3}{5})]=\sin[\sin ^{-1}((-\frac{24}{25}) )] \\<br />\sin [2\cos ^{-1} (-\frac{3}{5})]=-\frac{24}{25}

The correct choice is (d)

Similar questions