Math, asked by ushukla7880, 1 year ago

The value of ∫{(sinx + cosx)^2/√(1 + sin2x)}dx where,x→(0, π/2) is.

Answers

Answered by Pitymys
0

We have to evaluate the definite integral

 \int\limits_0^{\pi/2} {\frac{(\sin x+\cos x)^2}{\sqrt{1+\sin 2x}}} \, dx    .

Now note that

 1+\sin 2x=\sin^2 x+\cos ^2 x+2\sin x \cos x\\<br />1+\sin 2x=(\sin x + \cos x)^2\\<br />\sqrt{1+\sin 2x}=\sin x + \cos x<br />

The integrand is

 \frac{(\sin x+\cos x)^2}{\sqrt{1+\sin 2x}}=\frac{(\sin x+\cos x)^2}{\sin x+\cos x}=\sin x+\cos x

The integral becomes,

  \int\limits_0^{\pi/2} {\frac{(\sin x+\cos x)^2}{\sqrt{1+\sin 2x}}} \, dx  = \int\limits_0^{\pi/2} {(\sin x+\cos x)} \, dx  \\<br /> \int\limits_0^{\pi/2} {\frac{(\sin x+\cos x)^2}{\sqrt{1+\sin 2x}}} \, dx  = [\sin x-\cos x]_0^{\pi/2}\\</p><p> \int\limits_0^{\pi/2} {\frac{(\sin x+\cos x)^2}{\sqrt{1+\sin 2x}}} \, dx  = 1-0-(0-1)<br /> \int\limits_0^{\pi/2} {\frac{(\sin x+\cos x)^2}{\sqrt{1+\sin 2x}}} \, dx  =2<br />

Similar questions