Math, asked by Satvisha9859, 11 months ago

(sin^3 theta +cos^3 theta)(sin theta + cos theta )=1-sin theta * cos theta

Answers

Answered by Anonymous
3

{\underline{\huge{\mathbf{\color{maroon}{heya\:dost}}}}}

___________________❤

correct Question :-

\frac{(sin^3θ+cos^3 θ)}{(sinθ+ cosθ)}=1-sin θ * cos θ

step by step solution :-

  • let sinθ be x
  • let cosθ be y

putting x and y in place of sinθ and cosθ

\frac{(x^3 + y^3)}{(x+y)}=1-xy

  •  x^3 + y^3 = (x+y)(x^2 -xy + y^2)

LHS :-

 \frac{(x+y)(x^2 -xy + y^2)}{x+y}

 (x^2 -xy + y^2)

RHS:-

1 - xy

compare:-

 (x^2 -xy + y^2) = 1 - xy

  • putting sinθ and cosθ in place of x and y

 (sinθ^2 -sinθ*cosθ+ cosθ^2) = 1 - sinθ*cosθ

  •  sinθ^2 + cosθ^2 = 1

 (1 -sinθ*cosθ) = 1 - sinθ*cosθ

LHS. = RHS

..............hence verified

_____________________❤

{\underline{\huge{\mathbf{\color{maroon}{thank\:you}}}}}

Similar questions