Math, asked by shrui7755, 1 year ago

sin^3A+cos^3A= (sinA+cosA)(1-sinAcosA)

Answers

Answered by MaheswariS
67

Answer:

sin^3A+cos^3A= (sinA+cosA)(1-sinAcosA)

Step-by-step explanation:

Formula used:

1.\:a^3+b^3=(a+b)(a^2-ab+b^2)

2.\:sin^2{\theta}+cos^2{\theta}=1

Now,

sin^3A+cos^3A

=(sinA+cosA)(sin^2A-sinA\:cosA+cos^2A) (using formula (1))

=(sinA+cosA)(sin^2A+cos^2A-sinA\:cosA)

=(sinA+cosA)(1-sinA\:cosA) (using formula (2))

Therefore,

sin^3A+cos^3A= (sinA+cosA)(1-sinAcosA)

Answered by sonabrainly
10

Answer:

Step-by-step explanation:

(sin ^3 A + cos^3 A)/(sinA + cosA)  

or (sin ^2 A *sinA + cos^2 A*cosA)/(sinA + cosA)  

or ((1-cos^2 A)*sinA + (1-sin^2 A)*cosA)/(sinA + cosA)  

or (sinA-cos^2 AsinA + cosA-sin^2 AcosA)/(sinA + cosA)  

or (sinA + cosA - cos^2 AsinA - sin^2 AcosA)/(sinA + cosA)  

or (sinA + cosA - cos^2 AsinA - cosAsin^2 A)/(sinA + cosA)  

or ((sinA + cosA) - cosAsinA*(cosA + sinA))/(sinA + cosA)  

or ((sinA + cosA) - cosAsinA*(sinA + cosA))/(sinA + cosA)  

or ((sinA + cosA)*(1 - cosAsinA))/(sinA + cosA)  

or (sinA + cosA)*(1 - cosAsinA)/(sinA + cosA)  

or (1 - cosAsinA) (cancelling common numerator and denominator)

Similar questions