Math, asked by HyperBeast77, 1 year ago

sin (90 °+A)/cos(-A)-sin (180°-A)/sin(-A)+tan(270°+A)/cot(-A)=3

Attachments:

Answers

Answered by karthic49
13
sin(90 + A) = cos(A)
cos(-A) = cos(A)
sin(180-A) = sin(A)
sin(-A) = -sin(A)
tan(270+A) = -cot(A)
cot(-A) = - cot (A)

So,
=cos(A)/cos(A) - sin(A)/-sin(A) + (-cot(A))/-cot(A)

=1+1+1
=3

HyperBeast77: thanks bro
Answered by AnkitaSahni
0

Given :

\frac{sin (90 + A)}{cos (-A)} - \frac{sin (180 - A)}{sin (-A)} + \frac{tan (270 + A)}{cot (_A)}

To Find :

To prove \frac{sin (90 + A)}{cos (-A)} - \frac{sin (180 - A)}{sin (-A)} + \frac{tan (270 + A)}{cot (_A)} = 3

Solution :

LHS = \frac{sin (90 + A)}{cos (-A)} - \frac{sin (180 - A)}{sin (-A)} + \frac{tan (270 + A)}{cot (-A)}

We know,

sin (90 + A) = cos A

cos (-A) = cos A  

sin (180 - A) = sin A

sin (-A) = - sin A

tan(270 + A) = - cot A

cot (-A) = - cotA

Putting the values in \frac{sin (90 + A)}{cos (-A)} - \frac{sin (180 - A)}{sin (-A)} + \frac{tan (270 + A)}{cot (-A)} , we get

= \frac{cos A}{cos A} - \frac{sin A}{-sin A} + \frac{- cot A}{-cot A}

= 1 + 1 + 1

= 3

RHS = 3

Thus, LHS = RHS

Hence proved.

Similar questions