sin (90 °+A)/cos(-A)-sin (180°-A)/sin(-A)+tan(270°+A)/cot(-A)=3
Attachments:
Answers
Answered by
13
sin(90 + A) = cos(A)
cos(-A) = cos(A)
sin(180-A) = sin(A)
sin(-A) = -sin(A)
tan(270+A) = -cot(A)
cot(-A) = - cot (A)
So,
=cos(A)/cos(A) - sin(A)/-sin(A) + (-cot(A))/-cot(A)
=1+1+1
=3
cos(-A) = cos(A)
sin(180-A) = sin(A)
sin(-A) = -sin(A)
tan(270+A) = -cot(A)
cot(-A) = - cot (A)
So,
=cos(A)/cos(A) - sin(A)/-sin(A) + (-cot(A))/-cot(A)
=1+1+1
=3
HyperBeast77:
thanks bro
Answered by
0
Given :
To Find :
To prove = 3
Solution :
LHS =
We know,
sin (90 + A) = cos A
cos (-A) = cos A
sin (180 - A) = sin A
sin (-A) = - sin A
tan(270 + A) = - cot A
cot (-A) = - cotA
Putting the values in , we get
=
= 1 + 1 + 1
= 3
RHS = 3
Thus, LHS = RHS
Hence proved.
Similar questions