Math, asked by pavangoudar200426, 9 months ago

sin(90-A)cosA+sinA.cos(90-A) find the value​

Answers

Answered by srikanthn711
5

Answer:

Sina.cosa - {sina.cos(90°-a).cosa}/{sec(90°-a)} - {cosa.sin(90°-a)sina}/{cosec(90°-a)}

= sina.cosa - {sina.sina.cosa}/{coseca} - {cosa.cosa.sina}/{seca} [∵ sin(90°-a)=cosa, cos(90°-a)=sina , sec(90°-a) = coseca , cosec(90°-a) = seca]

= sina.cosa - sin³a.cosa - cos³a.sina [∵1/seca = cosa , 1/coseca = sina]

= sina.cosa - sina.cosa[sin²a + cos²a]

= sina.cosa - sina.cosa × 1 [ ∵sin²Ф + cos²Ф = 1 ]

= 0

Answered by kumrbirjesh95
7
Hope you understand.........
Attachments:
Similar questions