sin(cot^-1 3/4)=cos(tan^-1 x) find x
Answers
Answered by
1
cos(tan−1x)=sin[cot−1(34)] ...(1)As we know that sinx=cos(π2−x),sosin[cot−1(34)] =cos[π2−cot−1(34)]Now we know that tan−1x+cot−1x=π2 soπ2−cot−1(34)=tan−1(34) putting this, we getsin[cot−1(34)]=cos(π2−cot−1(34))=cos[tan−1(34)]Now, putting this value in eq(1), we getcos(tan−1x)=cos[tan−1(34)]⇒tan−1x=tan−1(34)⇒x=34
Answered by
0
Answer:
Step-by-step explanation:
Let
On comaring
Perpendicular = 3
Base = 4
Using Pythagoras's theorem,
perpendicular=√5²-3²=√16=4
tanz==4/3
tan⁻¹x=z
x=tanz
Similar questions