Math, asked by astronomer, 1 year ago

sin(cot^-1 3/4)=cos(tan^-1 x) find x

Answers

Answered by Anonymous
1


cos(tan−1x)=sin[cot−1(34)]      ...(1)As we know that sinx=cos(π2−x),sosin[cot−1(34)] =cos[π2−cot−1(34)]Now we know that tan−1x+cot−1x=π2 soπ2−cot−1(34)=tan−1(34) putting this, we getsin[cot−1(34)]=cos(π2−cot−1(34))=cos[tan−1(34)]Now, putting this value in eq(1), we getcos(tan−1x)=cos[tan−1(34)]⇒tan−1x=tan−1(34)⇒x=34
Answered by wifilethbridge
0

Answer:

x=\frac{4}{3}

Step-by-step explanation:

cos(tan^{-1}x)=sin(cot^{-1}\frac{3}{4})

Letcot^{-1}\frac{3}{4} = y

cot y =\frac{3}{4}

Cot y = \frac{perpendicular}{base}

On comaring

Perpendicular = 3

Base = 4

Using Pythagoras's theorem,

hypotenuse=\sqrt{p^2+b^2}=\sqrt{3^2+4^2}=\sqrt{25}=5

siny=\frac{P}{B}=\frac{3}{5}

sin(cot^{-1}\frac{3}{4}=siny=\frac{3}{5}

cos(tan^{-1}x)=3/5

tan^{-1}x=cos^{-1}(3/5)

cos^{-1}(3/5)=z

cosz=3/5

perpendicular=√5²-3²=√16=4

tanz==4/3

tan⁻¹x=z

x=tanz

x=\frac{4}{3}

Similar questions