Math, asked by vg096593, 7 months ago

sin theta+cos theta÷sin theta-cos theta+sin theta-cos theta÷sin theta+cos theta=2÷1-cos²theta​

Answers

Answered by Anonymous
3

\huge\tt\pink{\boxed{\tt{\blue{★\:Answer}}}}

Attachments:
Answered by udayagrawal49
5

Solution:

To prove:

\tt{\dfrac{sin \ \theta +cos\ \theta}{sin\ \theta -cos\ \theta} + \dfrac{sin\ \theta -cos\ \theta}{sin\ \theta +cos\ \theta } = \dfrac{2}{1-2cos^{2}\ \theta}}

Proof:

Taking L.H.S.,

= \tt{\dfrac{sin\ \theta +cos\ \theta}{sin\ \theta -cos\ \theta} + \dfrac{sin\ \theta -cos\ \theta }{sin\ \theta +cos\ \theta } }

On taking LCM, we get

= \tt{\dfrac{(sin\ \theta +cos\ \theta)^{2}+(sin\ \theta -cos\ \theta)^{2} }{(sin\ \theta -cos\ \theta)(sin\ \theta+cos\ \theta)} }

= \tt{\dfrac{sin^{2} \ \theta +cos^{2} \ \theta + 2sin\ \theta cos\ \theta + sin^{2} \ \theta +cos^{2} \ \theta - 2sin\ \theta cos\ \theta  }{sin^{2} \ \theta -cos^{2}\ \theta} }

= \tt{\dfrac{2sin^{2}\ \theta +2cos^{2}\ \theta}{sin^{2} \ \theta -cos^{2} \ \theta} }

= \tt{\dfrac{2(sin^{2} \ \theta +cos^{2} \ \theta)}{1-cos^{2}\ \theta  -cos^{2}\ \theta} }

= \tt{\dfrac{2*1}{1-2cos^{2}\ \theta} }

= \tt{\dfrac{2}{1-2cos^{2}\ \theta} } = R.H.S.

Hence Proved

Identities used :-

sin²θ + cos²θ = 1

⇒ sin²θ = 1 - cos²θ

Similar questions