Math, asked by mansi9889, 10 months ago

sin30°+tan45°-cosec60°/sec30 +cos60 +cot 45 evaluate​

Answers

Answered by tennetiraj86
9

Answer:

answer is given for your problem

Attachments:
Answered by InfiniteSoul
14

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

\sf\dfrac{sin30°+tan45°-cosec60°}{sec30 +cos60 +cot 45}

evaluate

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\sf\dfrac{sin30°+tan45°-cosec60}{sec30 +cos60 +cot 45}

  • \sf sin 30 = \dfrac{1}{2}

  • \sf tan 45 = 1

  • \sf cosec 60 = \dfrac{2}{\sqrt3}

  • \sf sec 30 = \dfrac{2}{\sqrt3}

  • \sf cos 60 = \dfrac{1}{2}

  • \sf cot 45 = 1

\implies\sf\dfrac{\dfrac{1}{2} + 1 - \dfrac{2}{\sqrt3}} {\dfrac{2}{\sqrt3} + \dfrac{1}{2} + 1}

\implies\sf\dfrac{\dfrac{\sqrt3 + 2\sqrt3 - 4 }{2\sqrt3}}{\dfrac{4 + \sqrt3 + 2\sqrt3}{2\sqrt3}}

\implies\sf{\dfrac{\sqrt3 + 2\sqrt3 - 4 }{\cancel{2\sqrt3}}}\times{\dfrac{\cancel{2\sqrt3}}{4 + \sqrt3 + 2\sqrt3}}

\implies\sf\dfrac{\sqrt3 + 2\sqrt3 - 4 }{4+\sqrt3+2\sqrt3}

\implies\sf\dfrac{ 3\sqrt3 - 4 }{4+3\sqrt3}

  • rationalize the denominator

\implies\sf\dfrac{ 3\sqrt3 - 4 }{4+3\sqrt3}\times\dfrac{ 3\sqrt3 - 4 }{3\sqrt3-4}

  •  (a+b) (a-b) = a^2 - b^2

\implies \dfrac{(3\sqrt3-4)^2}{(3\sqrt3)^2 + (4)^2}

  •  (a+b)^2 = a^2 + b^2 + 2ab

\implies\sf\dfrac{27+16-24\sqrt3}{27-16}

\implies\sf\dfrac{43- 24\sqrt3}{11}

{\bold{\blue{\boxed{\bf{\dfrac{43- 24\sqrt3}{11}}}}}}

________________________❤

THANK YOU❤

Similar questions