Math, asked by Victinee, 7 months ago

(sin³A + cos³ A/sin A + cos A) + sinA.cosA = 1​

Answers

Answered by Anonymous
1

Given :

(sin³A + cos³ A/sin A + cos A) + sinA.cosA

To prove :

(sin³A + cos³ A/sin A + cos A) + sinA.cosA = 1

Solution :

=> (sin³A + cos³ A/sin A + cos A) + sinA.cosA

=> sinA + cosA (sin²A + cos²A - sinAcosA) + sinAcosA/sinA + cosA

=> sin²A + cos²A - sinAcosA + sinA. cosA

=> sin²A + sin²A

=> 1

Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

{sin}^{2} A   + {cos}^{2} A = 1

2.

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} )

TO PROVE

 \displaystyle \frac{sin³A + cos³ A }{sin A + cos A}  + sin A  \:  cos A = 1

PROOF

 \displaystyle \frac{sin³A + cos³ A }{sin A + cos A}  + sin A  \:  cos A

 =  \displaystyle \frac{(sinA + cosA)({sin}^{2} A  - sinA  \: cosA +  {cos}^{2} A )}{sin A + cos A}  + sin A  \:  cos A

 =  \displaystyle \frac{(sinA + cosA)({sin}^{2} A   + {cos}^{2} A - sinA  \: cosA +  )}{sin A + cos A}  + sin A  \:  cos A = 1

 =  \displaystyle \: ({sin}^{2} A   + {cos}^{2} A - sinA  \: cosA   )+ sin A  \:  cos A

 =  \displaystyle \: 1- sinA  \: cosA   + sin A  \:  cos A

 = 1

Hence proved

Similar questions