Math, asked by shilpajain18, 1 year ago

SinA(1+tanA)+cosA(1+cotA)=CosecA+SecA​

Answers

Answered by deva695
6

Hope it is helpful ☺☺

Attachments:

FTZ: well done
FTZ: well done
FTZ: well done
FTZ: well done
shilpajain18: thanq
deva695: thanks
deva695: if it is helpful please mark it as brainliest
Answered by Anonymous
1
\huge\sf{Answer}

__________________________

=> \sin(a) \frac{1 + \sin(a) }{ \cos(a) } + \cos(a) \frac{1 + \cos(a) }{ \sin(a) }

=> \sin(a) \frac{ \cos(a) + \sin(a) }{ \cos(a) } + \cos(a) \frac{ \sin(a) + \cos(a) }{ \sin(a) }

=> \frac{ \sin(a) }{ \cos(a) } + \frac{ \cos(a) }{ \sin(a) } + ( \sin(a)+ \cos(a ))

=> \frac{ { \sin(a) }^{2} + { \cos(a) }^{2} }{ \sin(a) \cos(a) } + \sin(a) + \cos(a)

=>we \: know \: that \: { \ { \sin(a) }^{2} + { \cos(a) }^{2} } = 0

=> \frac{1}{ \sin(a + \cos(a) ) } + \sin(a) + \cos(a)

=> \frac{ \sin(a) }{ \sin(a) + \cos(a) } + \frac{ \cos(a) }{ \sin(a ) + \cos(a) }

=> \frac{1}{ \cos(a) } + \frac{1}{ \sin(a) }

=> \sec(a) + \csc(a)

_____________________________
Similar questions