(sinA -2sin^2A)/ (2cos^3A-cosA)=tanA.
Adarsh9450668057:
2SIN^3 A HAI.2SIN^2A KE JAGAH PAR,
Answers
Answered by
3
(sinA - 2sin^3A)/ (2cos^3A - cosA)
sinA(1 - 2sin^2A) / cosA (2cos^2A - 1)
sinA {1 - 2 (1 - cos^2A) } / cosA (2cos^2A - 1) (sin^2A = 1 - cos^2A)
sinA(1 - 2+2cos^2A) / cosA (2cos^2A - 1)
sinA (2cos^2A - 1) / cosA (2cos^2A - 1)
sinA/ cosA {(2cos^2A - 1) / (2cos^2A - 1) } cancel each other
tanA
you have wrong question...there is sin^3A instead of sin^2A
hope it's clear to you
sinA(1 - 2sin^2A) / cosA (2cos^2A - 1)
sinA {1 - 2 (1 - cos^2A) } / cosA (2cos^2A - 1) (sin^2A = 1 - cos^2A)
sinA(1 - 2+2cos^2A) / cosA (2cos^2A - 1)
sinA (2cos^2A - 1) / cosA (2cos^2A - 1)
sinA/ cosA {(2cos^2A - 1) / (2cos^2A - 1) } cancel each other
tanA
you have wrong question...there is sin^3A instead of sin^2A
hope it's clear to you
Answered by
4
Hola Friend ✋✋✋
Plz see the attachment....
Hope you will understand
Plz see the attachment....
Hope you will understand
Attachments:
Similar questions