Math, asked by sachithsachi600, 1 month ago

sinA-cosA-1÷sinA+cosA-1=1÷secA-tanA​

Answers

Answered by SeCrEtID2006
22

\bold{Given:-}

  •  \frac{sinA-cosA+1}{sinA+cosA-1}  \frac{=1}{secA-tanA}

\bold{To prove:-}

  • LHS=RHS

\bold{Solution:-}

  •  \frac{sinA-cosA+1}{sinA+cosA-1}

\\ \\ \\

  • divide by cos A

\\ \\ \\

  • as we know
  •  \frac{sinA}{cosA} =tanA

  •  \frac{1}{cosA} =secA

\\ \\ \\

  •  \frac{tanA-1+sec A}{tanA+1-secA}

\\ \\ \\

  • sec²A-tan²A=1

\\ \\ \\

  •  \frac{tanA-(sec²A-tan²A)+sec A}{tanA+1-secA}

\\ \\ \\

  • as we know a²-b²=(a-b)(a+b)

\\ \\ \\

  •  \frac{tanA-(secA-tanA)(secA+tanA)+sec A}{tanA+1-secA}

  •  \frac{tanA+secA-(secA-tanA)(secA+tanA)}{tanA+1-secA}

  •  \frac{tanA+secA-(secA-tanA)(secA+tanA)}{tanA+1-secA}

  •  \frac{tanA+secA(1-secA+tanA)}{tanA+1-secA}

  • tanA+secA

  • rationalise

  •  \frac{tanA+secA}{secA-tanA} ×secA-tanA

\\ \\ \\

  • as we know a²-b²=(a-b)(a+b)

\\ \\ \\

  •  \frac{sec²A-tan²A}{secA-tanA}

  • sec²A-tan²A=1

  •  \frac{1}{secA-tanA}

hence ,proved

LHS=RHS

Answered by Anonymous
3

Answer:

pls mark me as brainliest

Similar questions