Math, asked by sinhasunil166, 11 months ago

sintheta + costheta=√3+1/2 find the value of tantheta+cottheta​

Answers

Answered by Ves1857
0

See attachment for answer

Attachments:
Answered by sanjeevk28012
0

The value of TanФ + CotФ  = \dfrac{8}{17+4\sqrt{3}}    

Step-by-step explanation:

Given as :

SinФ + CosФ = √3 + \dfrac{1}{2}

Squaring both side

( SinФ + CosФ )²  =  ( √3 + \dfrac{1}{2}

Sin²Ф  + Cos²Ф + 2 SinФ CosФ  =  (√3)² + (\dfrac{1}{2} )² + 2 × √3 × \dfrac{1}{2}

1 +  2 SinФ CosФ  = 3 + \dfrac{1}{4} + √3                              ( ∵ Sin²Ф + Cos²Ф = 1 )

2 SinФ CosФ  = 3 + \dfrac{1}{4} + 1 +√3

2 SinФ CosФ  = 4 + \dfrac{1}{4} +√3

2 SinФ CosФ  =  \dfrac{16+1}{4} +√3

2 SinФ CosФ  =  \dfrac{17}{4} +√3

SinФ CosФ =  \dfrac{17}{8} + \dfrac{\sqrt{3} }{2}  = \dfrac{17+4\sqrt{3}}{8}                                 .............1

Again

TanФ + CotФ  =  \dfrac{Sin \Theta }{Cos\Theta }  + \dfrac{Cos \Theta }{Sin\Theta }

                        = \dfrac{Sin^{2} \Theta+Cos^{2}\Theta  }{Cos\Theta Sin\Theta }                         ( ∵ Sin²Ф + Cos²Ф = 1)

                        =  \dfrac{1 }{Cos\Theta Sin\Theta }            

                        = \dfrac{1}{\dfrac{17+4\sqrt{3}}{8}}                                  ( from eq 1 )

                        = \dfrac{8}{17+4\sqrt{3}}

So, The value of TanФ + CotФ  = \dfrac{8}{17+4\sqrt{3}}

Hence, The value of TanФ + CotФ  = \dfrac{8}{17+4\sqrt{3}}    Answer

Similar questions