Math, asked by DarkShadow4848, 10 months ago

Sinx/cosecx-1 +cosx/1+secx=sinxcosx/sinx-cosx

Answers

Answered by chirag9312
0

please mark as brainlist

Answered by Anonymous
2

\boxed{\huge{\mathfrak{Question}}}

_________________________

 \frac{sin \: x}{cosec \: x - 1}  \:   +  \frac{cos \: x}{1 + sec \: x}  =  \frac{sin \: x \: . \: cos \: x }{sin \: x - cos \: x}

_________________________

\boxed{\huge{\red{\mathfrak{Answer}}}}

_________________________

\boxed{\huge{\underline{\mathtt{L.H.S}}}}

 \longrightarrow  \: \frac{sin \: x}{ \frac{1 - sin \: x}{sin \: x} }  +  \frac{cos \: x}{ \frac{1 + cos \: x}{cos \: x} }  \\ \\   \longrightarrow \:   \frac{{sin}^{2} x}{1 - sin \: x} +  \frac{ {cos}^{2}x }{1 + cos \: x}  \\  \\  \longrightarrow \:    \frac{ {sin}^{2}x(1 + cos \: x) +  {cos}^{2} x(1 - sin \: x) }{(1 - sin \: x)(1 + cos \: x)}  \\  \\  \longrightarrow \:  \frac{ {sin}^{2}x +  {sin}^{2}x \: . \: cos \: x +  {cos}^{2}x - sin \: x  \: .\:  {cos}^{2}x    }{(1 - sin \: x)(1 + cos \: x)}  \\  \\  \longrightarrow \:  \frac{1 + sin \: x \: . \: cos \: x(sin \: x - cos \: x)}{1 + cos \: x - sin \: x + sin \: x \: . \: cos \: x}

_________________________

Do yourself

Similar questions