Math, asked by pravi771995, 1 year ago

(Sinx+cosx)/(sinx-cosx) =3, then the value of sin^4x-cos^4x is

Answers

Answered by MaheswariS
6

Answer:

\text{The value of $sin^4x-cos^4x$ is $\frac{3}5{}$}

Step-by-step explanation:

\textbf{Given:}

\frac{sinx+cosx}{sinx-cosx} =3

\implies\,sinx+cosx=3(sinx-cosx)

\implies\,sin\,x+cos\,x=3\,sin\,x-3\,cos\,x

\implies\,4\,cos\,x=2\,sin\,x

\implies\,2\,cos\,x=sin\,x

\implies\,tan\,x=2

\text{Now,}

sin^4x-cos^4x

=cos^4x(\frac{sin^4x}{cos^4x}-1)

=\frac{1}{sec^4x}(tan^4x-1)

=\frac{1}{(sec^2x)^2}(tan^4x-1)

=\frac{1}{(1+tan^2x)^2}(tan^4x-1)

=\frac{1}{(1+2^2)^2}(2^4-1)

=\frac{1}{5^2}(2^4-1)

=\frac{1}{25}(15)

=\frac{15}{25}

=\frac{3}{5}

\implies\boxed{\bf\,sin^4x-cos^4x=\frac{3}{5}}

Similar questions