Math, asked by santacruzeast, 11 months ago

sinx-sin5x+sin9x-sin13x/cosx-cos5x -cos9x+cos13x= cot 4x​

Answers

Answered by mharini2003123
4

Answer:the method is correct once check it

Attachments:
Answered by amitnrw
17

Answer:

sinx-sin5x+sin9x-sin13x/cosx-cos5x -cos9x+cos13x= cot 4x​

Step-by-step explanation:

sinx-sin5x+sin9x-sin13x/cosx-cos5x -cos9x+cos13x= cot 4x​

LHS Numerator

= Sinx - Sin5x + Sin9x - Sin13x

= Sinx - Sin13x   + Sin9x - Sin5x

Using SinA - SinB = 2Cos(A + B)/2 . Sin(A-B)/2

= 2Cos7xSin(-6x)  + 2Co7xSin2x

= 2Cos7x(Sin2x - Sin6x)

= 2Cos7x ( 2Cos4xSin(-2x))

= - 4Cos7x Cos4xSin2x

LHS Denominator

Cosx - Cos5x - cos9x + cos13x

= Cosx + Cos13x - (Cos5x + Cos9x)

Using CosA + CosB = 2Cos(a+b)/2  Cos(a-b)/2

= 2Cos7xCos(6x)  - 2Cos7xCos2x

= 2Cos7x(Cos(6x)  - Cos2x)

Using CosA - CosB = -2Sin(a+b)/2  Sin(a-b)/2

= 2Cos7x(-2Sin4xSin2x)

= - 4Cos7xSin4xSin2x

LHS = - 4Cos7x Cos4xSin2x / (- 4Cos7xSin4xSin2x)

= Cos4x/Sin4x

= Cot4x

= RHS

QED

Proved

sinx-sin5x+sin9x-sin13x/cosx-cos5x -cos9x+cos13x= cot 4x​

Similar questions