Math, asked by Anonymous, 1 year ago

solution dena .......​

Attachments:

Answers

Answered by Anonymous
16

Step-by-step explanation:

hope it helps you

.......................

Attachments:
Answered by Anonymous
77

 \:\:\:\:  \:  \:   \large\mathfrak{\underline{\huge\mathcal{\bf{\boxed{\boxed{\huge\mathcal{~~QUESTION~~}}}}}}}

The value of......

( \frac{i +  \sqrt{3} }{2} ) {}^{2019} +  ( \frac{i  -   \sqrt{3} }{2} ) {}^{2019}

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{!!ANSWER!!}}}}}}

<font color=red><marquee behavior=alternate>Solution</marquee></font>

 = ( \frac{i +  \sqrt{3} }{2} ) {}^{2019} +  ( \frac{i  -   \sqrt{3} }{2} ) {}^{2019}  \\  = ( \frac{ - i( - 1 +  \sqrt{3}i) }{2} ) {}^{2019} +  ( \frac{ - i( - 1  -   \sqrt{3} i}{2} ) {}^{2019}   \:  \\  = ( \frac{( - i) {}^{2019} ( - 1 +  \sqrt{3}i) {}^{2019}  }{2 {}^{2019} } ) +  ( \frac{( - i) {}^{2019}  ( - 1  -   \sqrt{3} i) {}^{2019} }{2 {}^{2019} } )    \:  \\  = ( \frac{i( - 1 +  \sqrt{3}i) {}^{2019}  }{2 {}^{2019} } ) +  ( \frac{i ( - 1  -   \sqrt{3} i) {}^{2019} }{2 {}^{2019} } )    \:  \\  =   \frac{i}{2 {}^{2019} } (( - 1 +  \sqrt{3} i) {}^{2019}  + ( - 1 -  \sqrt{3} i) {}^{2019} ) \\  now \:  \:  \\ 2w = ( - 1 +  \sqrt{3}i) \:  \: and \:  \: 2w { \: }^{2}   = ( - 1 -  \sqrt{3}i) \\ and \:  \:  \:  \: w {}^{3}   = 1 \\  \\ therefore \:  \:  \: \\  =  \frac{i}{2 {}^{2019} } ((2w) {}^{2019}  + (2w {}^{2}) {}^{2019}  ) \\  = \frac{i}{2 {}^{2019} } (2 {}^{2019} (w) {}^{2019}  +2 {}^{2019}  (w {}^{2}) {}^{2019}  )  \: \\   =  \frac{i}{2 {}^{2019} }  \times 2 {}^{2019} ((w {}^{3} ) {}^{673}  + (w {}^{3} ) {}^{2 \times 673} ) \\  = i(1 {}^{673}  + 1 {}^{2 \times 673} ) \\  = i(1 + 1) \\  = 2i

option (c)2i

<font color=green><marquee direction="down">hope this help you

Similar questions