Math, asked by anganabanerjee999, 10 months ago

Solve 12 and 13
No useless answer plz​

Attachments:

Answers

Answered by BrainlyTornado
6

QUESTION 12:

\displaystyle\lim_{x \to 0} \frac{ \sin x(1 -  \cos x)}{ {x}^{3} }

ANSWER 12:

\displaystyle\lim_{x \to 0} \frac{ \sin x(1 -  \cos x)}{ {x}^{3} }  =  \frac{1}{2}

NEED TO USE L' HOSPITAL's RULE:

\displaystyle\lim_{x \to 0} \frac{ \sin x(1 -  \cos x)}{ {x}^{3} }

 \dfrac{ \sin 0^{o} (1 -  \cos 0^{o})}{ {0}^{3} }

\displaystyle\lim_{x \to 0} \frac{ \sin x(1 -  \cos x)}{ {x}^{3} }  =  \frac{0}{0}=\infty

HENCE WE NEED TO USE L' HOSPITAL'S RULE.

FORMULAE USED:

★ d / dx(sin x) = cos x

★ d / dx(cos x) = - sin x

★ d / dx(uv) = uv' + vu'

★ d / dx(x³) = 3x²

★ d / dx(x²) = 2x

★ (sin x) / x = (cos x) / x = (sin 2x) / 2x = 1

★ 2 sin x cos x = sin 2x

QUESTION 13:

\displaystyle\lim_{x \to 0}\tan 5x  \csc 4x

ANSWER:

\displaystyle\lim_{x \to 0}\tan 5x  \csc 4x =  \frac{5}{4}

FORMULAE USED:

★ tan 5x / 5x = sin 4x / 4x = 1

★ cosec x = 1 / sin x

NOTE : REFER ATTACHMENT FOR EXPLANATION

Attachments:
Similar questions
Math, 1 year ago